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ABSTRACT

The current status of lnodel prediction and comparison with LDEF radiation (h)silnefry

nleasurelnents is sunlmarized with emphasis on major results obtained in evaluating the uncer-

tainties of 1)resent radiation environment model. The consistency of results and conclusi(ms ol)-

tained from model comparison with different sets of LDEF radiation data (dose, activation, flu-

ence, LET spectra) is discussed. Examples where LDEF radiation data and lnodeling results can

be utilized to provide improved radiation assessments for planned LEO missions (e.g., Space

Station) are given.

INTRODUCTION

The return of LDEF has provided a. unique opportunity to test current ionizing radiati(m

models with a. great variety of measurements. Figure 1 (ref. 1) describes the characteristics (_f

the LDEF mission and measurements that are important for these coml)arisons and figure 2 (ref.

1) shows the models and t)rograms whose outputs have been compared to the measurements of

various LDEF experiments.

PROTON DOSE

There were a number of exl)erinients (ref. 2, 3) which contained therni()huninescent dosime-

ters (TLD) with sufficient shielding so that the geomagnetically trapped protons contril)ute,l

nearly all the accumulated dose observed. These measurements provide a good test of the Vette

tra l)ped proton model AP8MIN and APSMAX(ref.6). Figures 3, 4, and 5 fl'om (ref. 7) show

coml)arisons of measurements with predictions both as ratios (Figures 3 and 5) and missi(m d()se

(Figure 4). The Figure 3 ratios suggest that the Vette models predict fluxes that are about 0.6 ()f

the actual fluxes. Energy dependence of the ratio is not evident since the ratio is c(,nstant ()ver a

large range of effective shield thicknesses. Figure 5 shows a test of the directional model(ref. 8)

against measurements. The higher observed ratios suggest that the proton scale heights used in
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the model are low. The comparisons are somewhat complicated by the effects of shielding geom-

etry. Both a comI)lex geometry model of tile spacecraft and accounting of tile l)rot(,n directional-

ity are required to match the trends observed in the measurements. One is not sufficient with, rot

the other.

ELECTRON DOSE

TLD measurements behind thin shields (< 1.Og/cm 2) provide a test of the AE8MIN and

AE8MAX geomagnetically trapped electron models(ref. 9). These were a nl.llll])er of measure-

ments on LDEF that meet this requirement(ref. 4, 5). In Figure 6 fl'om (ref. 7) these measure-

ments are COml)ared to predicted values fi)r a l)lane slab shielding geometry(tel. 10) with gen-

erally good agreement considering the difficulty of the measurements fi)r very thin geometries.

The high predictions at the thinnest shielding may reflect an excess of low energy electrons in the

models or geometry effects where the detector thicknesses are comparable with the shield thick-

heSS.

PROTON ACTIVATION

The LDEF measurements of activation samples for so many location and shiehling del)ths on

a single satellite with a long-term stable attitude is unique. The 2_Na. activation measurements

of the tray clamps are little confllsed by geometry and the surface is well mal)l)ed by munerous

samples. In Figure 7 fl'om (ref. 11) these measurements(ref. 12, 14) are compared with the di-

rectional flux model(ref. 8, 11, 12) confl)ined with botl, detailed and siml)le geometrical shielding

models. The predictions are h)wer than the measurements l)y about the same ratios seen in the

TLD versus predicted (h)se comparisons, again suggestit,g that the Vette proton flux model(ref.

6) predicts low fluxes for low orbital altitudes. The anisotropl,y of the proton flux is more evi-

dent in these measurements than in any otllers on LDEF.

Table 1. Ratio of 1)redicted-to-measured activity

at recovery for nickel activation smnples from (ref. 11)

Isotope Exp. P0006

Saml)le Location on LDEF

Exp. A0114 Exp. M0002 Exp. M0001

Sc-40 0.29

Mn-54 0.62 0.34

Co-56 0.66 0.69

Co-57 0.49 0.48

Co-58 0.71 0.69

Co-60 0.84 0.49

0.73 0.33

1.24 0.59

0.46 0.63

0.55 0.56

Average 0.60 0.54 0.74 0.53

Average fi)r all saml)les: 0.60±0.15

Tables 1 and 2 from (ref. 11) show intentional sample measurements fin' nickel (Table 1) and

vanadimn (Table 2) a.t a. variety of shielding del)ths. Again the mea.surements are higher than
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the model predictions with most of the ratios near those observed for dose and 'Z2Na activation.

Some of tile other ratios may 1)e explained by contributions from galactic cosmic rays or lmcer-

tainties in activation cross sections used ill the models. The general trend supp()rts the conclu-

sion fi'om the other ccmlparisons that the \,)tte flux predictions(ref. 3) are low.

Tal)le 2. C(mlparison of Sc-46 activation in vanadiunl samples

fl'om (ref. 11 )

Saml)le Location

Exp. Tray Position

Activity at Recovery (picocnries/kg) Ratio

Measllred C alculat ed h Ieas. / C alc.

P0006 F2 trailing edge 17+1.1 (a) 7.00 0.40

21-t-2.7 (1_) 0.33

A0114 C9 leading edge 20-t-1.5 (b) 7.65 0.38

M0001 H12 space end 20+13 (b) 8.76 0.44

22-t-6.8 (b) 9.50 0.44

M0002 G12 earth end 16+1.3 (b) 9.16 0.57

16+1.4 (c) {I.58

Average 0.46-t-0.16

LET SPECTRA

The long mission exl)osure ()n LDEF allowed tile measurement of the Linear Energy Trans-

fer (LET) spectra to 1)e extended to higher LET with 1)etter statistical accuracy than has l_een

achieved previously(ref. 15). Measurements at higher LET are significant because 1)artMes with

higher LET are more likely to produce Single Event Upsets (SEU)s of microelectronic devices

(an iml)ortant problem for spacecraft al)plicati(ms). Figure 8 from (ref. 16) shows coml)aris(ms

1)etween model(ref. 17) and measured LET sl)ectra. At high LET the measurements are sig-

nificantly higher than the model. At low LET where 1)rotons are the most common 1)article the

lnodel results are higher. This suggest the possibility that not all the prot()ns are l)eing (letected

due to their very thin tracks. The differences at high LET are more difficult to exl)lain, lint the

modeling al)l)roach ignores nuclear interactions and tile 1)roduced fission fl'agments.

h'on nuclei fluxes are of interest because these particles have the largest charges and there-

fi:)re largest LET of any 1)articles that are fairly abundant. (elemelltal abundances takes a ma.ior

step downward just 1)eyond iron.) Figure 9 fl'om (ref. 18) show LDEF measurements ()f the ir()n

energy spectra. The excess over fluxes expected from galactic cosmic rays in the energy range

(100-800 MeV) has been attributed to particles arriving during the large solar particle events

in the fall of 1989. F(,r iron nucM in this ellergy range to arrive at the LDEF _)rl)it through tile

Earth's magnetic field they must not have 1)een coml)letely stril)ped of electrons altd the results

suggest a charge near +12-13 similar to iron in the corona. In Figure 10 from (ref. 11. 19) the
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LDEF measured Fe fluxes are used to replace the Fe fluxes used in CREME(ref. 17) for a 500 km

altitude orl)it at 28.5 °. (The flux is not strongly dependent on altitude.) The result su_;est that

CREME 1)redicts high fluxes of tile 1,,w energy component of the heavier 1)articles.

SUMMARY

The LDEF ionizing radiation measurements continue to 1)rovide a unique Ol)l)ortunity to test

the current models ,,f tile pa,'ticle environment that will not 1)e rel)eated in the foreseeable fu-

ture. Carefid use of the models considering the details of shielding geometry and particle

alfisotrol)hy, and model assumptions are required to explain so,he of the trends observed in the

measurements. Only with this attention to detail can we locate where the models have significant

pr()blems describing the environment or the measurenients ha.re observation difficulty.
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I Unique Features
of

LDEF Mission

• Well-

instrumented

for

ionizing

radiation

measurements

• Long

mission

duration

• Fixed
orientation
(< 0.2"",t,o0ble

Importance to
Ionizing Radiation

Data Collection

• Extensive radiation dosimetry:

6 different types of dosimetry

mu/tip/e dosimeters of each type
(= 200 TLD's, > 500 PNDT's,

> 400 activation samples)

- multiple dosimetry locations (in
16 different experimental trays)

• High statistical accuracy of

dosimelry results

• Allows measurement of

trapped proton anisotropy

Importance to
Model/Coda Validation

• Data sufficiently extensive and

detailed to allow variety of

rnoclelincjchecks - e.g:
- aOsorbed dose

- proton and heavy ton fluence

- energy spectra
- LET spectra

. secondary neutron fluence

and spectra

• Unprecedented data accuracy
Ior checking model predictions

of high-LET radiation from

high-Z cosmic rays and nuclear
recoi_

• Unprecedented data for testing

models of trapped proton
anisotropy

Importance to
Future LEO Missions

• Allows benchmarking and
imwovements of predictive

methods for addressing
ionizing radiation issues:

dose to astronauts

electronics upsegburnout

- male,;ai_ dam_oe

- radiations backgrounds ;u
sensitive instrumentatpon

• High-LET radiation component is

of key importance in assessing
"single-hit" phenomena:

- biokxjcal effects

Sing/e-Event-Upsets
of electronics

• Trapped prolon anisotropy
important for LEO, fixed-orientation
spacecrait (such as Space Slation
Freedom, EOS)

Figure 1. Significance of LDEF data for validation of ionizing radiation models from (ref. 1).
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Overview of approach and models for LDEF ionizing radiation calculations from (ref.

1).
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Figure 3.
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Figure 5. Radiation dose anisotrophy on LDEF due to the directionality of the trapped proton

environment. Shown are predicted and measured values of the ratio for the dose on the

trailing (west) side LDEF to the dose on leading (east) side from (ref. 7).
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22Ha Activation of LDEF Aluminum Tray Clamps
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Figure 7. Preliminary comparison of predicted vs. measured effect (ref. 13, 14) of trapped proton

anisotrophy in terms of 22Na radioactivity induced in aluminum damps of LDEF exper-

iment trays from (ref. 11).
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Figure 8. Comparison of LDEF predictions of Linear Energy Transfer (LET) spectra and interim

results from measured spectra in experiment P0006(ref. 15). The predictions were made

using the CREME code(ref. 17) and a 3-D shielding geometry from (ref.16) .
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